Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 11(1): 4748, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958763

RESUMO

The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.


Assuntos
Genoma Humano/genética , Mutação , Neoplasias/genética , Composição de Bases , DNA Intergênico , Bases de Dados Genéticas , Exoma/genética , Éxons , Humanos , Estudos Retrospectivos , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
3.
J Vis Exp ; (122)2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28448052

RESUMO

Intervertebral disc (IVD) degeneration is a significant contributor to low back pain. The IVD is a fibrocartilaginous joint that serves to transmit and dampen loads in the spine. The IVD consists of a proteoglycan-rich nucleus pulposus (NP) and a collagen-rich annulus fibrosis (AF) sandwiched by cartilaginous end-plates. Together with the adjacent vertebrae, the vertebrae-IVD structure forms a functional spine unit (FSU). These microstructures contain unique cell types as well as unique extracellular matrices. Whole organ culture of the FSU preserves the native extracellular matrix, cell differentiation phenotypes, and cellular-matrix interactions. Thus, organ culture techniques are particularly useful for investigating the complex biological mechanisms of the IVD. Here, we describe a high-throughput approach for culturing whole lumbar mouse FSUs that provides an ideal platform for studying disease mechanisms and therapies for the IVD. Furthermore, we describe several applications that utilize this organ culture method to conduct further studies including contrast-enhanced microCT imaging and three-dimensional high-resolution finite element modeling of the IVD.


Assuntos
Disco Intervertebral/citologia , Técnicas de Cultura de Órgãos/métodos , Animais , Cartilagem/citologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Humanos , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/terapia , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...